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Introduction



Sparse High Dimensional Models
- Examples: regression, classification, graphical model, and network
analysis

- To reliably learn a high-dimensional model based on a finite sample, we
have to impose some structural assumptions.

. : only a small fraction of the model parameters © = (61, -- ,6,)
are non-zero.

Main techniques:

» Penalization framework

- Bayesian framework



Penalization Framework

The Penalized Likelihood Framework has the following form:

A~

O € argergln{f logp(Data | ©) + A Pen(O) }

Estimate Loss function Penalty function

For example, for linear regression, we have

p
min [[ly — XB|* + 1Y Pen(s,)]

J=1

where A > 0 is a tuning parameter, and Pen(6;) is a sparsity-inducing penalty
function, such as ¢y/¢;.



Bayesian Framework

In the Bayesian framework, we have a generative model for both data and

parameters:
Prior : 7(0©)
Likelihood : P(Data|©)
=
Posterior : «(© | Data)

In fact, the prior 7(©) plays the same role as a penalty function:

Penalty = minus-log Prior



Penalization, a Special Case of the Bayesian Framework

« The of © is the value that maximizes = (© | Data). Recall

P(Data | ©) x 7(©)

m(© | Data) = — ~ ——
| P(Data | ©) x 7(©)dO

x P(Data | ©) x 7(©)

+ So finding MAP is equivalent to minimizing

—log P(Data | ©) + [ — log(©)],
——
Bayesian Penalty

that is, Penalty = minus-log Prior.

- For example, Lasso with penalty A\|0| = MAP of Double Exponential
Prior.



Choice of Priors

Sparsity-inducing priors used in the Bayesian approach can be broadly
classified into two categories.

. , such as

« Double Exponential prior [Park and Casella, 2008]
» Horseshoe prior [Carvalho et al., 2009]
- global-and-local shrinkage prior [Polson and Scott, 2010]

 Two-group mixture dist, such as

- spike-and-slab Normal prior [George and McCulloch, 1993; Rockova and
George, 2014]
- spike-and-slab Lasso prior [Rockova and George, 2016]



Normal Priors

Normal priors are usually not recommended.

« Not a heavy tail dist, i.e., % log 7(#)| is not bounded [Johnstone and
Silverman, 2004]

« Shrinkage but no sparsity. For example, ridge regression does not lead to
a sparse coefficient vector.



Normal Priors

Normal priors are usually not recommended.

« Not a heavy tail dist, i.e., % log 7(#)| is not bounded [Johnstone and
Silverman, 2004]

« Shrinkage but no sparsity. For example, ridge regression does not lead to
a sparse coefficient vector.

However, what if the prior variance for each parameter can be set adaptively?

W(Qj) ~ N(O,T?)

- r7 = importance/relevance of ¢,
« In particular, 7"]2 = 0 for irrelevant parameters.



Automatic Relevance Determination (ARD)

MacKay (1995)
The ARD model puts a prior over the regression parameters which embodies
the concept of . This is done in a simple and soft way by

introducing multiple regularisation constants, one associated with each
input. Using Bayesian methods the regularisation constants for junk inputs
are automatically inferred to be largely preventing those inputs from causing
significant over-fitting.

« ARD Prior: p(©[r?) = TI7_, N(6;]0,77)
. r? = 0 implies a point mass posterior distribution at zero on 6;

- Learn 2 by optimizing evidence function



Prior work

[MacKay, 1995; Neal, 1995]: ARD for single layer neural network
[Tipping, 2001; Tipping and Faul, 2003]: ARD algorithm for relevance
vector machine

[Wipf and Nagarajan, 2007]: Alternative view and optimization method for
ARD

[Titsias and Lazaro0Gredilla, 2014; Kharitonov et al., 2018]: Variational
ARD Algorithm for Bayesian Neural Network

Main focus has been on developing algorithms for prediction, no
guarantees or theoretical results for estimation and variable selection.
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Variational ARD
Linear Regression Model:

y = X3+ N(0, (72[71)

ARD Prior:

p(B) = H?:ﬂ’j(ﬂj) = H§:1 N(5; | 0, ’}2)
Variational Distribution:

9(8) = W_,4;(8;) = Ty N(B; | 115, 67)
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Scale-Invariance Property

Effect of scale transformation:

Divide i by ¢

N VRO RS i , i 72 2

o, ", 7%, 6 = multiply ; by c = < Divide ?; by ¢
original optimal solution Divide 7232‘ by 2

transformed optimal solution

Scale transformation to any feature «; won’t change the outcome of
estimation and variable selection

Remark:

1. Subset selection or equivalently ¢y penalty is scale-invariant.
2. Lasso, Ridge, and some Bayesian methods are not scale-invariant
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Evidence Lower Bound Objective

Minimize ELBO
L(p, ¢, 7r,0°) = —E4logp(y|B) + o - KL(q|p)
= —E,logN(y|X8,0°I,) EP: N(15, 99)IIN(O, 7))
where _

- « > 0is a hyperparameter [Higgins et al., 2017; Yang et al., 2020]

- E, = expectation w.r.t the variational dist 5; ~ N(y;, <z>j2)

n > lly —Xp|? d)JQ‘ 2
—Eglogp(y|B) = 5 log o + T o2 + Z ﬁ”%”
J
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Pythagorean Theorem

1 2 9 | Hitd] 2 2
7 (logrj —log ¢ + =2+ —1), ¢;#0,r7 #0
J

KL (NG ) [NO.72) = { =g =72 =0
otherwise

Note that the prior variances r = (r1,...,rp) only appear in the expression
above. It is easy to verify that the term above (or equivalently £) is minimized

at
Pythagorean

rjzz,uj2~+¢?, j=1,....p.
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Computation: Coordinate Descent

Using the relationship:
ry =g+ 65,

we can eliminate r2 and reduce the ELBO to

ly = Xpl | N~ [90q2 . 70 PN SR
I JZ; [%Hwﬂb T P(/lja@j)] 3T §1Og0 ;

then derive a Coordinate Descent algorithm: optimize w.r.t

(15, (/)3),3‘ =1,---,pand o sequentially while fixing other parameters.
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Algorithm 1: Coordinate Descent

Input (X, y, a);
Init & and 52;
while Not Converge do
forjinl,...,pdo
zj = yT_ Zk;,ej Ty fu;
R xT 5. a2z |12
=1 <w;”2j>'?)+;

P2 = ac? (1_a&2nwju%> :
i T, @l2)? )

52 — ly—Xall5+>20_1 63 llz;13
L o n ’

- Note that a6? always show up together

15



Algorithm 2: Coordinate Descent (Alternative)

Input (X, y, a);

Init f;

while Not Converge do

forjinl,...,pdo
Zj=y— Zk;,ej Ty fu;

T .
;= ””szQ(l_ allfjH%) :
J llz; I3 (a:j 5)? +’

2 _ & (1_ deg‘H%) :
3 i3 (x]2)2)

- pre-specify a sequence of &
« cross-validation on each &
- Compute 62 at the end, if needed.
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Theoretical Results




Setup
Assume y = X3* + N(0,021,,) and o2 known.

Truth = g%, S =supp(B*), s=|[9]

Output a variational dist, not posterior dist:

i(B) = HN(Bj!ﬂj, o)

- Estimation Consistency: [l — 8|, [l — 8. I — B8l
- Selection Consistency: sign(fi) = sign(8*), supp(¢?) = supp(3*)
- Variational Concentration Result for ¢(3).
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A View of Penalized Regression

(1) Pythagorean: r? = ;i3 + ¢3
(2) Optimal Variational Variance: gbj? = 7(15)
(1) + (2) = ELBO reduces to (assume o2 known):

_ 2 p
Ly = =Xl > 9(wy)

2n ,
7j=1
where g plays the role of a function,
o’a () nT ()
= — — log(1 —
9() 2n L o2« og( o2a )}

(Note: we normalized each column of X to have mean zero and norm /n.)
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Figure 1: Penalty g(x) (left); its derivative (middle); its second order derivative
(right).



Solution Set

Reduced Objective:
p

y — Xpl
L) = W= XH 8™ )
j=1

We analyze the following solutions:

- f: Any local optima within an ¢; ball [Loh and Wainwright, 2015; Gan et
al., 2020]

poe{llpl < R}
Note: R can increase to infinity with sample size n.

A~

© 6% = (), d(8) =TT} 4i(B) = Ty N(Bi i, 67)
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Restricted Strong Convexity (RSC)

Assumption 1 (The RSC Condition)
There exists strictly positive constant Cy, Cs, for any vector A € RP,

lo

gp 2
A 1
E2|A )2 (1)

XA|2
X8 5 cuag -,

« A caveat in high dimensions: ||y — X u||3 is not strongly convex
- RSC is weaker than strong convexity, and

« can hold with high prob if X are sampled from Gaussian [Raskutti et al.,
2010; Raskutti et al., 2011]
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¢,/ Error Bounds

Theorem 1
Suppose Assumption 1 holds, and

. n
ol < <0 (/). axtogn,
ogp

then with high probability,

. " slo
i — B2 5 ) 82

n

N * lo
= Bl 3 4/ ==

- slogp
1% 3
n

22



Conditions on Correlations Among Features
Assumption 2

There exist positive constants c., and n such that,

XTxs
1(ZE=5) oo < oo (2)
n
and
| X5 Xs(XEXS) oo < (3)

« Condition (2) is common

« Condition (3) is weaker than the in [Wainwright,
2009; Loh and Wainwright, 2017] where n needs to be strictly less than 1,
while our n can be any positive constant.
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/., Error Bounds and Selection Consistency

Theorem 2

Suppose Assumptions 1 and 2 hold,

" n
I8l < R<0 ([ ). axlogn,
1
B lmin = O <\/°§p> . nxslogp,

then with high probability,

1. fuis unique with || o — B*[|oe 3 1/ B2

2. sign(fx) = sign(B*)
3. supp(fr) = supp(@?) = supp(B*) = S
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Concentration

- Small regions around the truth with radius &,(— 0), e.g.,

By ={B:[IB =Bl <&}, or[|B—B%2 <& or[[B — B%lcc < &n}
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Concentration

- Small regions around the truth with radius &,(— 0), e.g.,
By ={B:1B—B"1 <&}, or[|B—=B2 <& or[[B— B o <&}

- Martin [2021] proposed to study Eg-(I1(5,,)) when ITis a data-dependent
measure (not necessarily posterior) over the parameter space

« We study whether
Eg-(4(Bn)) =1
where
§(B) = T_yq;(8;) = T_, N(Biz;, 62)

is our variational dist
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Variational Concentrates on the Truth?

Theorem 3

Define
Bn - {B : Supp(ﬁ) = S, ”IBS - IBEHOO S fn}

Assume conditions of Theorem 2 hold. Then as n — 4o,
Es<(4(Br)) = 1

1-6
holds for any series &,, < (w / 1"%) , Where ¢ is a constant that can take
arbitrary small value in (0, 1).

Theorem 3 implies that:

c Eg-(¢{lIB—B*[lh <5-&u}) — 1
* Eg-(¢{lIB— B[l < V5 -&u}) — 1.
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Simulation




We compared our algorithm with the following Bayesian selection algorithms,

» sparsevb [Ray and Szabd, 2021]

« varbvs [Carbonetto and Stephens, 2012]
- ebreg [Martin et al., 2017]

« EMVS [Rockova and George, 2014]

on simulated data using Lasso (gimnet) [Friedman et al., 2010] as a
benchmark.
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Experiment 1

Each element of X are i.i.d N(0, 1):
- Case 1: (n,p,s, o) = (200,800,10,1), 8% = (1,-2,3,—4,--- ,9,-10)
(none zero coefficient at random place);
- Case 2: (n,p, s, o) = (200, 1000,15,1), 35 = 10 (at random place);
- Case 3: (n,p, s, o) = (100,400, 20, 5), B% = log 100 (at the beginning);
- Case 4: (n,p,s,o) = (100,400, 20, 5), B% = 21og 100 (at the end).
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Table 1: Uncorrelated Design

Metric Method Case 1 Case 2 Case 3 Case 4
lasso 0.719 £ 0.093 1.13+0.106 12.44+3.22 16.4+8.74
sparsevb 0.264+0.075 0.293+0.064 8.1246.02 7.351+6.52
£, error varbvs 0.223+0.050 0.2934-0.065 14.1+£6.66 24.0+16.9
ebreg 0.236+£0.051 0.308+0.063 11.3+6.9 8.35+12.6
emvs 0.608+0.044 0.577+0.049 11.8+6.57 11.9+£143
ours 0.235+0.049 0.296+0.066 5.82+4.76 8.07+7.78
lasso 0.541+0.142 0.405+0.133 0.603+0.09 0.638+0.063
sparsevb 0.033+0.059 0+0 0.119+0.177 0.062+-0.108
FDR varbvs 0.001+0.009 0.0014-0.009 0.076+0.122 0.064+0.128
ebreg 0+0 010 0.146+0.203 0.065+0.182
emvs 0.005+0.024 040 0.251+0.162 0.199+40.225
ours 0.036+0.052 0+0 0.324+0.136 | 0.042+0.154
lasso 110 1+0 0.891+0.173 0.956+0.117
sparsevb 1+0 1+0 0.844+0.252 0.975+0.108
PR varbvs 140 1+0 0.409+0.369 0.461+0.435
ebreg 1£0 1+0 0.669+0.323 0.905+-0.236
emvs 1+0 1+0 0.698+0.3 0.893+0.22
ours 1+0 1+0 0.948+0.127 0.967+0.124
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Experiment 2

Each row of X are i.i.d N(0, ), where diagonal elements of 3 are 1 and off
diagonal elements of ¥ are <. For all three cases, (n,p, s,o) = (200, 400, 40, 1)
and none zero coefficient index is randomly generated.

« Case1:¢=0.2
- Case2:¢=05
« Case3:¢=0.8
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Table 2: Correlated Design

Metric Method ¢=0.2 ¢=05 =08
lasso 4.59+0.719 7.53+1.38 10.8+1.96
sparsevb 0.896+0.217 2.96+0.546 7.7£1.67
25 error varbvs 0.553+0.069 0.707+0.098 51.04+9.2
ebreg 1.71+£0.31 4.8+0.723 3.94+4.7
emvs 1.22+0.124 1.54+0.182 2.1410.207
ours 0.561+0.069 0.797+0.141 2.181+0.478
lasso 0.54+0.044 0.573+0.037 0.605+0.037
sparsevb 0+0 0.003+40.009 0.01440.017
FDR varbvs 0.001+0.005 0.0024-0.006 0.453+0.134
ebreg 0+0 0+0 0.008+4-0.026
emvs 0.040+0.032 0.058+0.05 0.04110.034
ours 0.003+0.009 0+0 0+0
lasso 0.995+0.01 0.979+0.023 0.956+0.029
sparsevb 0.993+0.011 0.913+0.019 0.768+0.033
PR varbvs 1+0 1+0 0.214+0.083
ebreg 0.949+0.0145 0.828+0.027 0.9224-0.156
emvs 1+0 1+0 140
ours 1+0 140.002 0.953+0.021
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Conclusions

- We study the Automatic Relevance Determination (ARD) model for
high-dimensional linear regression under sparsity constraints.

< ARD introduces an parameter for each
regression coefficient, which we propose to learn via variational
optimization.

- When relevance/variance is set to zero, corresponding features are
automatically filtered out.

- For our variational solutions, we establish convergence results, in terms
of parameter estimation and variable selection, which provide a
for ARD models.
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